無筋矩形断面に対する曲げ耐力の数式解について

日中構造研究所 松原勝己

1.はじめに

無筋コンクリートを使用したトンネル構造物の安全性照査では、無筋矩形断面に対する曲げ耐力の算 出が要求されることがある。本報告では幾つかの仮定を設け、無筋矩形断面に対する曲げ耐力(M-N曲 線)の数式解を求めたので、以下に記載するものである。また、数式解を実装したエクセルファイルも 作成した。

無筋矩形断面の曲げ耐力算出にあたり、以下を仮定した。

(1)断面の直ひずみは、断面高さ方向に直線分布とする。

(2)コンクリート引張応力は無視する。

(3)コンクリート圧縮応力・ひずみ関係として、コンクリート標準示方書・設計編(2017年制定 p.181)
 に提示される非線形モデル(放物線と直線の組み合わせ)を仮定する。ただし、コンクリート強度の係数 k1 (=0.85) と限界ひずみ ε cu (=0.0035)の強度依存性は考慮しない。

(4)軸力は断面中心に作用すると仮定する。

(5)曲げ耐力を算出する限界状態としては、コンクリート圧縮縁で限界ひずみ ε cu に達するとき、 およびコンクリート引張領域が断面中心まで達するときの 2 つのモードを考慮する。

なお、添付したエクセルファイルについては、自由に使用していただいて結構ですが、結果の妥当性 判断については使用者に委ねることとします。

2. 数式解の誘導

2.1 場合分け

数式解は、以下の4つの場合に応じて解を求めた。

- (1)ひび割れ耐力時(中立軸位置が断面中心)かつ圧縮縁ひずみが 0.002 より小さいとき (x=h/2 かつ r<1 のとき)
- (2)ひび割れ耐力時(中立軸位置が断面中心)かつ圧縮縁ひずみが 0.002 より大きいとき (x=h/2 かつ r≥1 のとき)
- (3)終局耐力時(圧縮縁ひずみが0.0035)かつ中立軸が断面内のとき

(ε cc=ε cu かつ h/2<x≦h のとき)

- (4)終局耐力時(圧縮縁ひずみが0.0035)かつ中立軸が断面外のとき
 - (ε cc= ε cu かつ x>h のとき、引張縁側の圧縮ひずみは 0.002 より小さい)

ここに、x:中立軸位置(圧縮縁からの距離)、h:断面高さ

r: ε z=0.002 に対する圧縮縁ひずみ ε cc の比(= ε cc/ ε z)

ε cc: コンクリート圧縮縁のひずみ、ε cu: コンクリート圧縮限界ひずみ 0.0035

本ケースは、中立軸位置が断面中心まで到達する場合で、かつ圧縮縁ひずみが 0.002 よりも小さい場 合である。

軸方向の力の釣り合いおよび中立軸周りのモーメントの釣り合いより、次式が成立する。

$N_c = N$	(1)
$N_{c}\gamma_{G} = M$	(2)

ここに、Nc:コンクリート圧縮応力の総和

N:軸力

yG:中立軸から Nc の作用位置までの距離

M:曲げモーメント

式(1)および(2)の Nc および ygは、後述の参考資料において r<1 の場合を参照して、次式で表される。

$$N_c = \frac{bx\sigma_0}{3}r(3-r)$$
(3)

$$y_G = \frac{8-3r}{4(3-r)}x$$
(4)

したがって、式(1)は、式(3)を用いて以下となる。

 $\frac{bx\sigma_0}{3}r(3-r) = N$

ここで、x=h/2 とし、r について整理すれば、次式のように書ける。

$$r^2 - 3r + \frac{6N}{bh\sigma_0} = 0 \tag{5}$$

r について解けば、

$$r = \frac{3}{2} \left(1 \pm \sqrt{1 - \frac{8N}{3bh\sigma_0}} \right)$$

ここで、r<1の条件により、根号の前の符号はマイナスを採用する。

$$r = \frac{3}{2} \left(1 - \sqrt{1 - \frac{8N}{3bh\sigma_0}} \right) \tag{6}$$

なお、式(5)より、r=1 のとき N=bh σ o/3 となり、r<1 の条件から、軸力 N に対し以下の制限が成立 する。

$$N < \frac{bh\sigma_0}{3} \tag{7}$$

式(2)~(4)より、曲げモーメントMが、以下の通り表すことができる。

$$M = \frac{bh^2 \sigma_0}{48} r(8 - 3r) \tag{8}$$

軸力 N を既知としたとき、式(6)により r を求め、式(8)に代入することにより、ひび割れ耐力時 (r<1) の曲げモーメント M を算出できる。ただし、軸力 N に式(7)の条件が付与される。

本ケースは、中立軸位置が断面中心まで到達する場合で、かつ圧縮縁ひずみが 0.002 よりも大きい場 合である。

式(1)および(2)は同様に成立するが、Ncおよび yGは、後述の参考資料において r≥1の場合を参照して、次式で表される。

$$N_c = \frac{bx\sigma_0}{3r}(3r - 1)$$
(9)

$$y_G = \frac{6r^2 - 1}{4r(3r - 1)}x\tag{10}$$

ここで、x=h/2とすれば、式(1)と式(9)より、次式を得る。

$$\frac{bh\sigma_0}{6r}(3r-1) = N \tag{11}$$

式(11)をrについて解けば、次式を得る。

$$r = \frac{1}{3\left(1 - \frac{2N}{bh\sigma_0}\right)} \tag{12}$$

なお、式(11)より、r=1のとき N=bh σ o/3 となり、r≥1の条件から、軸力 N に対し以下の制限が成立 する。

$$N \ge \frac{bh\sigma_0}{3} \tag{13}$$

同様に、x=h/2として、式(2)、(9)および(10)より、曲げモーメントを次式で表すことができる。

$$M = \frac{bh^2 \sigma_0}{48} \frac{6r^2 - 1}{r^2} \tag{14}$$

軸力 N を既知としたとき、式(12)により r を求め、式(14)に代入することにより、ひび割れ耐力時(r ≧1)の曲げモーメント M を算出できる。ただし、軸力 N に式(13)の条件が付与される。

2.4 $\varepsilon \operatorname{cc} = \varepsilon \operatorname{cu} \operatorname{mom} h/2 \le h \operatorname{mom} b$

本ケースは、圧縮縁においてコンクリート限界ひずみ 0.0035 に達し、かつ中立軸が断面内に存在す る場合である。

軸方向の力の釣合式は、式(1)が同様に成立する。また、コンクリート圧縮応力総和 Nc については、 圧縮縁で ϵ cc= ϵ cu となることを考慮し、参考資料の r \geq 1 となる場合を参照するとともに、r=ru= ϵ cu/ ϵ z (=0.0035/0.002=1.75) と置き、次式が成立する。

$$N_c = \frac{bx\sigma_0}{3r_u} (3r_u - 1)$$
(15)

ここに、b:断面幅

x:中立軸位置(圧縮縁からの距離)

σ₀:応力ひずみ関係におけるコンクリート応力の最大値(=0.85fc、fc:コンクリート強度)

ru:終局時におけるひずみ ϵ cu の ϵ z (=0.002) に対する比 (=0.0035/0.002=1.75) 中立軸からコンクリート応力総和 Nc の作用位置までの距離 y_G は、次式で得られる。

$$y_G = \frac{6r_u^2 - 1}{4r_u(3r_u - 1)}x\tag{16}$$

軸方向の力の釣り合いを考慮し、式(1)と式(15)より、次式を得る。

$$\frac{bx\sigma_0}{3r_u}(3r_u-1) = N \tag{17}$$

ここに、N:軸力

式(17)により、中立軸位置 x が、次式で得られる。

$$x = \frac{3r_u}{b\sigma_0(3r_u - 1)}N$$
(18)

なお、式(17)より、x=h/2 および x=h としたとき、軸力 N が次式で得られる。

$$N = \frac{3r_u - 1}{6r_u} bh\sigma_0 = 0.4048bh\sigma_0 \quad (x=h/2 \ O \ge 3)$$
(19)

$$N = \frac{3r_u - 1}{3r_u} bh\sigma_0 = 0.8095bh\sigma_0 \quad (x=h \ \mathcal{O} \succeq \textcircled{E})$$
(20)

すなわち、軸力 N に以下の条件が付与される。

 $0.4048bh\sigma_0 \le N \le 0.8095bh\sigma_0$ (21)

次に、中立軸周りのモーメントの釣り合いを考慮する。本ケースでは、中立軸位置と軸力作用位置が 異なるので、式(2)の右辺の軸力の項が付加され、次式が成立する。

$$N_c y_G = M - N\left(\frac{h}{2} - x\right) \tag{22}$$

式(22)に、式(15)および(16)を代入し、Mについて解けば、曲げモーメントが次式で得られる。

$$M = \frac{b\sigma_0(6r_u^2 - 1)}{12r_u^2} x^2 + N\left(\frac{h}{2} - x\right)$$
(23)

以上より、終局耐力時(h/2<x≦h)の曲げモーメントは、軸力Nを既知としたとき、中立軸位置を式(18)で求め、式(23)に代入することで算出できる。ただし、軸力Nに式(21)の条件が付与される。

2.5 $\varepsilon \operatorname{cc} = \varepsilon \operatorname{cu}$ かつ x>h のとき

本ケースは、圧縮縁においてコンクリート限界ひずみ 0.0035 に達し、かつ中立軸が断面外に存在す る場合である。

本ケースの断面仮定を、図1に示す。

本ケースでは中立軸が断面外にあるため、参考資料に示す解析式によりコンクリート応力総和を算出 すると、断面外の応力分の寄与も加算される。そのため、圧縮縁から中立軸までの応力総和 Nc0 を求め た後、引張縁から中立軸までの余分な応力総和 Nc1 を差し引くことでコンクリート断面内の応力総和 Nc を算出することとする。同様にモーメントに関しても、Nc0 の寄与から Nc1 の寄与を差し引くこと とする。

【記号】

- h:断面高さ
- b:断面幅
- x: 圧縮縁から中立軸までの距離
- ε cc: 圧縮縁のひずみ
- ε cc1:引張縁側の圧縮ひずみ
- **σ**₀: 圧縮縁の応力(=0.85fc、fc: コンクリート強度)
- Nc0:断面外も含む(圧縮縁から中立軸まで)コンクリート圧縮応力総和
- Nc1:断面外部分(引張縁から中立軸まで)のコンクリート圧縮応力総和
- yG0: Nc0の作用位置から中立軸までの距離
- yG1: Nc1の作用位置から中立軸までの距離
- N:軸力
- M:曲げモーメント

図1	断面仮定	(中立軸が断面外にあ	る場合)
----	------	------------	------

図1を参照し、引張縁でのひずみ ε cc1 は、次式で表される。

$$\varepsilon_{cc1} = \frac{x-h}{x} \varepsilon_{cc} \tag{24}$$

Nc1、Nc0およびNcは、参考資料を参照し、次式で表すことができる。

$$N_{c1} = \frac{b(x-h)\sigma_0}{3}r_1(3-r_1) \tag{25}$$

$$N_{c0} = \frac{bx\sigma_0}{3r_u} (3r_u - 1) \tag{26}$$

$$N_c = N_{c0} - N_{c1} \tag{27}$$

$$\sum \sum l \sum_{x} r_1 = \frac{\varepsilon_{cc1}}{\varepsilon_z} = r_u \frac{x-h}{x}$$
(28)

$$r_u = \frac{\varepsilon_{cu}}{\varepsilon_z} = \frac{0.035}{0.002} = 1.75 \tag{29}$$

軸方向の力の釣り合い式は、先のケースと同様に、式(1)が成立する。式(1)および式(25)~(27)を用い、 中立軸位置 x について整理すれば、以下に示す 3 次方程式が得られる。

$$(r_u - 1)^3 \left(\frac{x}{h}\right)^3 + 3\left\{r_u^2(2 - r_u) - r_u \frac{N}{bh\sigma_0}\right\} \left(\frac{x}{h}\right)^2 + 3r_u^2(r_u - 1)\left(\frac{x}{h}\right) - r_u^3 = 0$$
(30)

ここで、式(30)において、x=h と置けば、N=(3ru-1)/(3ru)・bh σ 0=0.8095・bh σ 0 が得られ、先のケース(3) の軸力範囲の最大値(式(20))に一致することがわかる。

次に、中立軸周りのモーメントの釣り合いを考慮すれば、次式が成立する。

$$N_{c0}y_{G0} - N_{c1}y_{G1} = M + N\left(x - \frac{h}{2}\right) \tag{31}$$

$$\sum \sum i \sum_{n} y_{G0} = \frac{6r_u^2 - 1}{4r_u(3r_u - 1)} x$$
(32)

$$y_{G1} = \frac{8 - 3r_1}{4(3 - r_1)} (x - h) \tag{33}$$

なお、Nc0、Nc1 および r1 については、式(25)、(26)および(28)により得られる。 式(31)を、M について解けば、次式を得る。

$$M = N_{c0}y_{G0} - N_{c1}y_{G1} - N\left(x - \frac{h}{2}\right)$$
(34)

以上より、終局耐力時(x>h)曲げモーメントは、式(30)よって中立軸位置 x を求め、式(34)に代入することで算出することができる。

2.6 まとめ

上記の結果から、4つのケースの M-N 関係は、以下の通り整理することができる。

(1)N≦bh σ ₀/3 のとき

$$M = \frac{bh^2 \sigma_0}{48} r(8 - 3r) \tag{35}$$

$$r = \frac{3}{2} \left(1 - \sqrt{1 - \frac{8N}{3bh\sigma_0}} \right) \tag{36}$$

ここに、N:軸力、b:断面幅、h:断面高さ、σ₀:0.85fc(fc:コンクリート強度) M:曲げモーメント

(2)bh $\sigma_0/3 \leq N \leq 0.4048$ ・bh $\sigma_0 \mathcal{O}$ とき

$$M = \frac{bh^2 \sigma_0}{48} \frac{6r^2 - 1}{r^2} \tag{37}$$

$$r = \frac{1}{3\left(1 - \frac{2N}{bh\sigma_0}\right)} \tag{38}$$

(3)0.4048 · bh σ 0 ≦ N ≦ 0.8095 · bh σ 0 ひとき

$$M = \frac{b\sigma_0(6r_u^2 - 1)}{12r_u^2} x^2 + N\left(\frac{h}{2} - x\right)$$
(39)

$$x = \frac{3r_u}{b\sigma_0(3r_u - 1)}N$$
(40)

ここに、ru:εcu/εz(=0.0035/0.002=1.75) x:圧縮縁から中立軸までの距離

$$M = N_{c0}y_{G0} - N_{c1}y_{G1} - N\left(x - \frac{h}{2}\right)$$
(41)

$$N_{c0} = \frac{bx\sigma_0}{3r_u} (3r_u - 1) \tag{42}$$

$$y_{G0} = \frac{6r_u^2 - 1}{4r_u(3r_u - 1)}x\tag{43}$$

$$N_{c1} = \frac{b(x-h)\sigma_0}{3}r_1(3-r_1) \tag{44}$$

$$y_{G1} = \frac{8 - 3r_1}{4(3 - r_1)} (x - h) \tag{45}$$

$$r_1 = r_u \frac{x-h}{x} \tag{46}$$

$$(r_u - 1)^3 \left(\frac{x}{h}\right)^3 + 3\left\{r_u^2(2 - r_u) - r_u \frac{N}{bh\sigma_0}\right\} \left(\frac{x}{h}\right)^2 + 3r_u^2(r_u - 1)\left(\frac{x}{h}\right) - r_u^3 = 0$$
(47)

3. 検討例

検討例には、以下の断面諸元を使用した。

断面高さh:30cm

断面幅 b:100cm

コンクリート圧縮強度 fc: 13.85N/mm2(材料係数 y c=1.3 を考慮)

図2に、数式解を用いた M-N 曲線の検討結果を示す。数式解に現れる3次方程式については、エク セルのソルバー機能を利用して解を求めた。

図2には、別途、先に作成した「矩形 RC 断面の M-N 相互作用図」のエクセルマクロ(分割法を適 用)によって算出した結果も示した。無筋矩形断面への適用にあたっては、引張縁において引張強度に 達するというひび割れ耐力 Mc の定義を断面中心に変更するとともに、鉄筋断面積およびコンクリート 引張強度を小さく設定することを考慮した。

図2によれば、数式解の結果とエクセルマクロの結果は、ほぼ一致していることがわかる。

(b)中立軸位置

図3に、M-N曲線および中立軸位置を無次元表示した結果を示す。

M-N 曲線の誘導過程から、無次元化曲げモーメント $M/(bh^2 \sigma_0)$ が、無次元化軸力 $N/(bh \sigma_0)$ で表されることがわかる (b: 断面幅、h: 断面高さ、 σ_0 : 0.85fc、fc: コンクリート強度)。したがって、無次元表示を行うことで、断面寸法やコンクリート強度に依らず **M-N** 曲線を汎用的に表示可能となる。

図3には、幾つかの閾値もプロットしている。引張破壊と圧縮破壊の境界(釣合破壊時)となる軸力 値および中立軸が断面外となる軸力値については、式(19)と(20)に示した。

最大曲げモーメントを示す軸力および曲げモーメントについては、以下の通り誘導できる。 式(18)と(23)から x を消去し、M を N で表すと次式が得られる。

$$\frac{M}{bh^2\sigma_0} = -\frac{3}{4} \frac{6r_u^2 - 4r_u + 1}{(3r_u - 1)^2} \left(\frac{N}{bh\sigma_0}\right)^2 + \frac{1}{2} \frac{N}{bh\sigma_0}$$
(48)

式(48)をNに関して微分し、dM/dN=0の条件から、曲げモーメント最大時の軸力値が次式で得られる。

$$\frac{N}{bh\sigma_0} = \frac{(3r_u - 1)^2}{3(6r_u^2 - 4r_u + 1)} = 0.4865$$
(49)

また、曲げモーメントは、式(49)を式(48)に代入して、次式で表される。

$$\frac{M}{bh^2\sigma_0} = \frac{(3r_u - 1)^2}{12(6r_u^2 - 4r_u + 1)} = 0.1216$$
(51)

さらに、釣合破壊時の曲げモーメントについては、式(19)を式(48)に代入し、次式となる。

$$\frac{M}{bh^2\sigma_0} = \frac{6r_u^2 - 1}{48r_u^2} = 0.1182$$

次に、断面が純圧縮耐力に達した(引張縁において ϵ z=0.002)のときの中立軸位置を求めるために、 式(47)に N/(bh σ o)=1 を代入し、x/h について解けば次式を得る。

$$\frac{x}{h} = \frac{r_u}{r_u - 1} = 2.333 \tag{52}$$

式(52)と式(24)より、 ϵ cc= ϵ cu として、引張縁側ひずみ ϵ cc1 を求めると ϵ cc1= ϵ z となることが確認できる。

(a)M-N 曲線

(b)中立軸位置

図3 M-N および中立軸位置の無次元表示

4. 添付のエクセルファイルについて

2.で導入した数式解を使用し、曲げ耐力(M-N曲線)の算出を行うエクセルファイルを作成した。 表1に、エクセルファイルのシートの作成例を示す。

入力する項目は、①断面高さh (cm)、②断面幅 b (cm)、③コンクリート強度 fc (N/mm2) および ④軸力値 (kN) の4つである。これらを入力することにより、曲げ耐力 M (kNm) を計算できる。

2.で説明したケース(1)~(4)のうち、(1)~(3)まではエクセルのセル内に記述した式による表計算であるが、ケース(4)についてはエクセルのソルバーとマクロを併用した計算となっている。

曲げ耐力の計算手順は、以下の通りである。

(1)3つの断面諸元、断面高さ、断面幅およびコンクリート強度を入力する。

(2)曲げ耐力を計算する軸力値を、0から順に入力する。表1の例では、軸力値の最大値 Nmax を純圧 縮耐力(0.85・fc・b・h)と設定している。

(3)軸力の全範囲(0~Nmax)にわたり、項目 N/(bh σ_0)から yG1(cm)までをドラッグする。それにより、ケース(1)~(3)までについては曲げ耐力が計算される。

(4)ケース(4)の計算については、以下の通りソルバーとマクロを併用する。

(5)「開発」→「マクロ」→「編集」の順にクリックし、マクロのソースコードを開く。

(6)ケース(4)の計算範囲を以下の通り指定する。「k(=x/h)」の項目に「-」が入っていない最初の行数 と最後の行数を確認し、ソースコードの変数「ista」と「iend」に設定を行う。表 1 の例では、それぞ れ 62 と 75 になっている。

(7)マクロを実行する。ソルバーの表が現れるので、正常に計算されたことを確認し、「OK」をクリックする。この操作をケース(4)に相当する軸力の数だけ行う。表1の例では、14回である。

表1 エクセルファイルのシート「曲げ耐力」の作成例

		数式解											
断面高さh(cm)	30	軸力N(kNm)	N/(bh σ 0)	r	X(cm)	M(kNm)	k(=X/h)	f(k)	Nc0(kN)	yG0(cm)	r1	Nc1(kN)	yG1(cm)
断面幅b(cm)	100	0	0.0000	0.0000	15.000	0.000	-	-	-	-	-	-	-
コンクリート強度fc(N/mm2)	13.85	50	0.0142	0.0286	15.000	4.994	-	-	-	-	-	-	-
強度に係る係数k1	0.85	100	0.0283	0.0578	15.000	9.975	-	-	-	-	-	-	-
ε zに対する ε cuの比ru	1.75	150	0.0425	0.0875	15.000	14.944	-	-	-	-	-	-	-
		200	0.0566	0.1179	15.000	19.898	-	-	-	-	-	-	-
Nmax(kNm)	3530.8	250	0.0708	0.1490	15.000	24.837	-	-	-	-	-	-	-
		300	0.0850	0.1808	15.000	29.759	-	-	-	-	-	-	-
		350	0.0991	0.2134	15.000	34.665	-	-	-	-	-	-	-
		400	0.1133	0.2469	15.000	39.552	-	-	-	-	-	-	-
		450	0.1275	0.2813	15.000	44.418	-	-	-	-	-	-	-
		500	0.1416	0.3166	15.000	49.262	-	-	-	-	-	-	-
		550	0.1558	0.3531	15.000	54.083	-	-	-	-	-	-	-
		600	0.1699	0.3908	15.000	58.877	-	-	-	-	-	-	-
		650	0.1841	0.4298	15.000	63.641	-	-	-	-	-	-	-
		700	0.1983	0.4702	15.000	68.374	-	-	-	-	-	-	-
		750	0.2124	0.5123	15.000	73.069	-	-	-	-	-	-	-
		800	0.2266	0.5563	15.000	77.723	-	-	-	-	-	-	-
		850	0.2407	0.6025	15.000	82.330	-	-	-	-	-	-	-
		900	0.2549	0.6511	15.000	86.881	-	-	-	-	-	-	-
		950	0.2691	0.7027	15.000	91.367	-	-	-	-	-	-	-
		1000	0.2832	0.7579	15.000	95.774	-	-	-	-	-	-	-
		1050	0 2 9 7 4	0.8176	15 000	100 083	-	-	-	-	-	-	-
		1100	0.3115	0.8830	15 000	104 265	-	-	-	-	-	-	-
		1150	0.3257	0.9562	15,000	108.275	-	-	-	-	-	-	-
		1200	0.3399	1 0408	15,000	112 033	-	-	-	-	-	-	-
		1250	0.3540	1 1418	15,000	115 477	-	-	-	-	-	-	-
		1300	0.3682	1 2645	15,000	118 602	-	-	-	-	-	-	-
		1350	0.3824	1 4 1 6 7	15,000	121 408	-	-	-	-	-	-	-
		1400	0.3965	1.6105	15,000	123.806	_	-	_	-	-	-	-
		1450	0.4107	-	15,000	125.000	-	-	_	-	-	-	-
		1500	0.4707	-	15 744	126.766	-	-	-	-	-	-	-
		1550	0.4240	_	16 269	127.608	_	-	_	-	-	_	-
		1600	0.4530	_	16 794	127.000	_	-	_	-	-	_	-
		1650	0.4672	-	17 21 9	120.201	-	-	-	-	-	-	-
		1700	0.4073	-	17.012	120.037	_	-	-	-	-	_	-
		1750	0.4015	_	10.260	120.024	_	_	_	_	_	_	_
		1900	0.4950		10.300	120.792		_	_	_			_
		1950	0.5098		10.093	120.045	_		_		_		
		1000	0.5240		10.042	120.075							
		1050	0.5381	-	19.942	127.389	-	_	_	_	-	-	-
		1950	0.5523	_	20.407	120.484	-	_	_	_	-	_	
		2000	0.5004	_	20.992	120.301	-	_	_	_		_	-
		2000	0.5800		21.017	124.020							
		2100	0.5948	_	22.042	122.401	_	_	_	_	_	_	_
		2100	0.0089	_	22.001	110.003		_	_	_	_	_	
		2200	0.6231	_	23.091	116.08/	_	_	_	_	_	_	_
		2200	0.0373	_	23.010	114.040		_	_	_	_	_	
		2300	0.6514	-	24.141	114.040	-	-	_	-	_	-	_
		2300	0.0050		24.000	109 520							
		2400	0.0797	-	20.190	105.020	_	-	-	-	-	_	_
		2400	0.0939	-	20./10	100.433	_	_	-	_	-	_	_
		2550	0.7001	-	20.240	00 602	_	-	-	-	-	_	_
		2000	0.7222	-	20./00	90.003	_	_	-	_	-	_	_
		2650	0.7505	_	27.290	00.000	_	_	_	_	_	_	_
		2000	0.7505	_	27.014	86 701	_	_	_	_	_	_	_
		2750	0.7047	_	20.339	82 32/	_	_	_	_	-	_	_
		2700	0.703	_	20.004	77 700	-	-	_	-	-	-	-
		2000	0.7930	_	29.309	72 974	-	_	_	_	_	-	_
		2000	0.0072	-	20.452	67.000	1.015	115-06	2001.4	17 795	0.0260	14	0.201
		2000	0.8355	_	31 036	62.970	1.015	4 26E-06	2957.0	18 126	0.0200	7.0	0.501
		2000	0.8/07	_	31.030	57 020	1.055	1325-04	20176	18 /00	0.0004	17.6	1 1 1 1
		3050	0.8638	_	32 272	52 733	1.030	3 38E-06	3084 3	18 007	0 1 2 8 3	343	1.573
		2100	0.0000	-	22.373	47 607	1 105	1 265-04	3150.0	10.307	0.1200	59.2	2 002
		2150	0.0700	_	34 017	47.007	1 1 2 4	274=-04	32/10	10 067	0.1002	01.0	2.000
		2200	0.0922	-	25.005	27 014	1.134	4145-00	2225 1	20 4 4 4	0.2007	1251	2.000
		3200	0.9003	-	26 1 4 0	31.214	1.10/	4.14E-00	24440	20.444	0.2002	1040	3.299
		3200	0.9200	_	37 502	26 501	1.200	2875-00	3572 1	21.112	0.2970	272.1	4.042
		3300	0.5340	_	20.165	20.001	1.200	2.07E-00	2721 /	21.903	0.0001	273.1	5 0 9 0
		3330	0.9488	-	41 215	15 507	1.300	1.29E-07	3026.2	22.8/4	0.4095	536.2	J.989 7 264
		2450	0.9030	-	41.313	0,000	1.377	4.9E-00	10000	24.130	0.4/93	770 1	0.004
		3400	0.0012	-	44.3/9	3.030	1.4/9	1.70E-00	4220.2	20.919	0.0070	1/8.1	3.300
		3000	1.0000	-	49.913	0.000	0.017	1./9E-00	4/00.4	29.101	0.0982	1200.4	12.//2
		3030.0	1.0000	-	09.007	0.000	2.317	-1.9E-06	0022.3	40.090	0.9947	3091.5	24.705

以下では、コンクリート応力・ひずみ関係を非線形とした場合(参図 2)、コンクリート圧縮応力総和 Nc および作用位置 y_G を、解析的に算出する。

参図1に、断面仮定を示す。

[記号]

b:断面幅、h:断面高さ、x::中立軸位置(圧縮縁からの長さ)、 ϵ cc:圧縮縁ひずみ Nc:コンクリート圧縮応力総和、yg:コンクリート圧縮応力総和の作用位置(中立軸からの距離) $\sigma = f(\epsilon): コンクリートの応力ひずみ関係、y:中立軸から上方にとった座標値、<math>\epsilon$:yにおけるひ ずみ、 σ :yにおけるコンクリート応力

参図1 断面仮定

コンクリートの応力・ひずみ関係 $\sigma = f(\epsilon)$ として、土木学会・コンクリート標準示方書・設計編 (2017 年制定 p.181) に従い、参図 2 に示すように放物線と直線の組み合わせでモデル化する。

εcc:最外縁圧縮ひずみ
 εz:塑性化時のひずみ(0.002)
 ε'cu:終局ひずみ(最大 0.0035)
 σ0:最大応力(k1·f'c)

参図2 コンクリートの応力・ひずみ関係

コンクリート圧縮応力総和 Nc は、次式で表すことができる。

$$N_c = \int_0^x b \cdot dy \cdot \sigma = \int_0^x bf(\varepsilon) dy$$
 (1)

 $y=(x/\epsilon cc)\cdot\epsilon$ を考慮し、変数 y を ϵ に置換すれば、 $dy=(x/\epsilon cc)d\epsilon$ 、積分範囲が 0 から ϵcc になるから、式(1)は次式となる。

$$N_{c} = \frac{bx}{\varepsilon_{cc}} \int_{0}^{\varepsilon_{cc}} f(\varepsilon) d\varepsilon$$
⁽²⁾

$$\exists \exists k_1 \in \mathcal{F}_{\varepsilon_z} = \begin{cases} \sigma_0 \frac{\varepsilon}{\varepsilon_z} \left(2 - \frac{\varepsilon}{\varepsilon_z} \right) & (\varepsilon < \varepsilon_z) \\ \sigma_0 & (\varepsilon \ge \varepsilon_z) \end{cases} \\ \sigma_0 = k_1 f_c' \end{cases}$$

(a) ε cc< ε z のとき

$$N_{c} = \frac{bx}{\varepsilon_{cc}} \int_{0}^{r} \sigma_{0} t(2-t) \varepsilon_{z} dt = bx \sigma_{0} \frac{1}{r} \int_{0}^{r} t(2-t) dt = bx \sigma_{0} \frac{1}{r} \left[t^{2} - \frac{t^{3}}{3} \right]_{0}^{r} = \frac{bx \sigma_{0}}{3} r(3-r)$$
(3)

(b) ε cc≧ ε z のとき

$$N_{c} = \frac{bx}{\varepsilon_{cc}} \int_{0}^{\varepsilon_{z}} \sigma_{0} \frac{\varepsilon}{\varepsilon_{z}} \left(2 - \frac{\varepsilon}{\varepsilon_{z}} \right) d\varepsilon + \frac{bx}{\varepsilon_{cc}} \int_{\varepsilon_{z}}^{\varepsilon_{cc}} \sigma_{0} d\varepsilon = I_{1} + I_{2}$$

$$\tag{4}$$

(a)と同様に、変数 t と r を定義すれば、 I_1 の t に関する積分範囲は、0 から 1 となり、以下のように書ける。

$$I_1 = \frac{bx}{\varepsilon_{cc}} \int_0^1 \sigma_0 t (2-t) \varepsilon_z dt = bx \sigma_0 \frac{1}{r} \int_0^1 t (2-t) dt = bx \sigma_0 \frac{1}{r} \left[t^2 - \frac{t^3}{3} \right]_0^1 = \frac{2bx \sigma_0}{3r}$$
(5)

 I_2 についても、同様に変数 t と r を定義すれば、 I_2 の t に関する積分範囲は、1 から r となり、以下のように書ける。

$$I_{2} = bx\sigma_{0}\frac{1}{r}\int_{1}^{r}dt = bx\sigma_{0}\frac{1}{r}[t]_{1}^{r} = \frac{bx\sigma_{0}}{r}(r-1)$$

したがって、式(4)~(6)より、

(6)

$$N_c = \frac{2bx\sigma_0}{3r} + \frac{bx\sigma_0}{r}(r-1) = \frac{bx\sigma_0}{3r}(3r-1)$$
(7)

以上より、Ncの値は、r<1 あるいは r≧1 により、以下の通り表される。

$$N_{c} = \begin{cases} \frac{bx\sigma_{0}}{3}r(3-r) & (r<1)\\ \frac{bx\sigma_{0}}{3r}(3r-1) & (r \ge 1) \end{cases}$$
(8)

 $\sum \sum k \sum_{r} r = \frac{\varepsilon_{cc}}{\varepsilon_z}$

b:断面幅、x:中立軸位置(圧縮縁から中立軸までの距離)、σ₀:最大応力(=k₁f'c)、

ε cc: 圧縮縁におけるひずみ、εz: 塑性化し始めるひずみ(=0.002)

式(8)により、コンクリート応力総和 Nc を求めることができる。なお、終局時を想定し圧縮縁ひずみ $\epsilon_{cc} = \epsilon'_{cu} = 0.0035$ とした場合、r=1.75 となり、Nc=0.8095B・k₁・f'c・x が得られるが、この係数値は、等 価応力ブロック法における $\beta_1 = 0.8$ とほぼ等しいことがわかる。

2 コンクリート応力総和 Nc の作用位置 y₆

コンクリート圧縮応力総和 Nc の作用点の中立軸からの距離 yg を求める。

中立軸周りのコンクリート応力総和のモーメントの釣合により、次式が成立する。

$$N_c y_G = \int_0^x b \cdot dy \cdot \sigma \cdot y \tag{9}$$

ygについて解けば、次式が得られる。

$$y_G = \frac{\int_0^x b\sigma y dy}{N_c} \tag{10}$$

ここで、式(10)の右辺の積分値を I とし、y=(x/ ε cc)・ ε 、dy=(x/ ε cc)d ε の変数変換を行えば、次式を得る。

(a) ε cc< ε z のとき

 $\varepsilon = \varepsilon z \cdot t \ge \exists t ; d \varepsilon = \varepsilon z dt$ であり、 $r = \varepsilon cc / \varepsilon z \varepsilon z$ 表すれば、変数 t に関する積分範囲は 0 から r となるから、式(11)は、次式となる。

$$I = \frac{bx^2}{\varepsilon_{cc}^2} \sigma_0 \int_0^r t^2 (2-t) \varepsilon_z^2 dt = bx^2 \sigma_0 \frac{1}{r^2} \left[\frac{2}{3} t^3 - \frac{t^4}{4} \right]_0^r = \frac{bx^2 \sigma_0 r}{12} (8-3r)$$
(12)

(b) ε cc≧ ε z のとき

$$I = \frac{bx^2}{\varepsilon_{cc}^2} \int_0^{\varepsilon_z} \sigma_0 \frac{\varepsilon}{\varepsilon_z} \left(2 - \frac{\varepsilon}{\varepsilon_z}\right) \varepsilon \, d\varepsilon + \frac{bx^2}{\varepsilon_{cc}^2} \int_{\varepsilon_z}^{\varepsilon_{cc}} \sigma_0 \varepsilon d\varepsilon = I_1 + I_2$$

(a)と同様に、変数 t と r を定義すれば、 I_1 の t に関する積分範囲は、0 から 1 となり、以下のように書ける。

$$I_1 = \frac{bx^2}{\varepsilon_{cc}^2} \int_0^1 \sigma_0 t^2 (2-t) \varepsilon_z^2 dt = \frac{bx^2 \sigma_0}{r^2} \left[\frac{2}{3} t^3 - \frac{t^4}{4} \right]_0^1 = \frac{5bx^2 \sigma_0}{12r^2}$$
(13)

 I_2 についても、同様に変数 t と r を定義すれば、 I_2 の t に関する積分範囲は、1 から r となり、以下のように書ける。

$$I_{2} = bx^{2}\sigma_{0} \left(\frac{\varepsilon_{z}}{\varepsilon_{cc}}\right)^{2} \int_{1}^{r} t dt = bx^{2}\sigma_{0} \frac{1}{r^{2}} \left[\frac{t^{2}}{2}\right]_{1}^{r} = \frac{bx^{2}\sigma_{0}}{2r^{2}} (r^{2} - 1)$$
(14)
したがって、式(12)~(14)より、

$$I = \frac{5bx^2\sigma_0}{12^{-2}} + \frac{bx^2\sigma_0}{2r^2}(r^2 - 1) = \frac{bx^2\sigma_0}{12r^2}(6r^2 - 1)$$
(15)

式(12)と(15)を、式(10)に代入し、かつ Nc に式(8)を用いることにより、yg が以下にように表すことができる。

$$y_G = \frac{I}{N_c} = \begin{cases} \frac{8-3r}{4(3-r)}x & (r < 1) \\ \frac{6r^2 - 1}{4r(3r-1)}x & (r \ge 1) \end{cases}$$
(16)

 $\sub \sub k\sub, r = \frac{\varepsilon_{cc}}{\varepsilon_z}$

x:中立軸位置(圧縮縁から中立軸までの距離)、 ϵ_{cc} :圧縮縁におけるひずみ、 ϵ_{z} :塑性化し 始めるひずみ(=0.002)

式(16)により、コンクリート応力総和の作用点位置 yg を求めることができる。なお、終局時を想定し 圧縮縁ひずみ $\epsilon_{cc} = \epsilon'_{cu} = 0.0035$ とした場合、r=1.75 となり yg=0.5840x が得られるが、作用点位置を圧 縮縁からの距離で表すと、0.416x となる。この値は等価応力ブロック法における a/2= β_1 ·x/2=0.4x と ほぼ等しいことがわかる。